Bayesian Recommender Systems: Models and Algorithms
نویسنده
چکیده
This thesis is about how Bayesian methods can be applied to explicitly model and efficiently reason about uncertainty to make optimal recommendations. We are interested in three dimensions of recommender systems: (1) preference elicitation, (2) set-based recommendations, and (3) matchmaking. The first dimension concerns how one can minimize the elicitation efforts in learning a user’s utility function to propose the maximal utility recommendation. The second dimension concerns set-based recommendations, and the problem of how one can optimize the relevance of the recommended set, with respect to uncertainty over the relevance of each item in the set. The third dimension concerns the problem of matchmaking, which is the process of pairing competitors based on similar latent skill levels, given match outcomes, e.g., score, or win/lose/draw. All three dimensions face an inherent problem of handling uncertainty : user utility uncertainty for preference elicitation, query topic uncertainty for set-based retrieval in the context of document retrieval, and skill uncertainty in matchmaking. Bayesian approaches prove to be extremely flexible in modeling various problems, and are robust to risk. However, it is not until recently that efficient Bayesian inference techniques have been introduced for complex models. Thus, we utilize recent advances in Bayesian approaches for addressing these three problems. Our contributions in the thesis are twofold. First, we present compact Bayesian graphical models for dimensions (1)–(3). Second, for each dimension, we make use of advanced Bayesian inference techniques to learn and make optimal recommendations.
منابع مشابه
Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملAn Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملEvaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011